First steps towards an intelligent laser welding architecture using deep neural networks and reinforcement learning
نویسندگان
چکیده
To address control difficulties in laser welding, we propose the idea of a self-learning and self-improving laser welding system that combines three modern machine learning techniques. We first show the ability of a deep neural network to extract meaningful, low-dimensional features from high-dimensional laser-welding camera data. These features are then used by a temporal-difference learning algorithm to predict and anticipate important aspects of the system’s sensor data. The third part of our proposed architecture suggests using these features and predictions to learn to deliver situation-appropriate welding power; preliminary control results are demonstrated using a laser-welding simulator. The intelligent laser-welding architecture introduced in this work has the capacity to improve its performance without further human assistance and therefore addresses key requirements of modern industry. To our knowledge, it is the first demonstrated combination of deep learning and Nexting with general value functions and also the first usage of deep learning for laser welding specifically and production engineering in general. This work also provides a unique example of how predictions can be explicitly learned using reinforcement learning to support laser welding. We believe that it would be straightforward to adapt our approach to other production engineering applications. © 2014 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the Organizing Committee of SysInt 2014.
منابع مشابه
Intelligent laser welding through representation, prediction, and control learning: An architecture with deep neural networks and reinforcement learning
Laser welding is a widely used but complex industrial process. In this work, we propose the use of an integrated machine intelligence architecture to help address the significant control difficulties that prevent laser welding from seeing its full potential in process engineering and production. This architecture combines three contemporary machine learning techniques to allow a laser welding c...
متن کاملNeural Networks for fast sensor data processing in Laser Welding
To address the need for robust and fast representation, we introduce deep learning neural networks and parallel programming techniques for laser welding. In order to deal with high-dimensional data within real-time constraints, we use a deep autoencoder to extract robust, meaningful and low dimensional features. The implementation is then optimized, using parallel programming techniques and sho...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملThe Diagnosis of Brucellosis in Rafsanjan City Using Deep Auto-Encoder Neural Networks
Introduction: Brucellosis is considered as one of the most important common infectious diseases between humans and animals. Considering the endemic nature of brucellosis and the existence of numerous reports of human and animal cases of brucellosis in Iran, the incidence of human brucellosis in Rafsanjan city was determined in the last 3 years (2016–2018). The main objective of this study was t...
متن کامل